

International Journal of Advances in Engineering and Management (IJAEM)

Volume 5, Issue 7 July 2023, pp: 461-467 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0507461467 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 461

Software Defect Estimation Using Machine

Learning Algorithms

Pappala Sasi, Saragadam Sridhar
Department of Master of Computer Science ,Miracle Educational Society Group of Institutions, Vizianagram–

535216 (AP) India

Department of Master of Computer Science, Miracle Educational Society Group of Institutions, Vizianagram–

535216 (AP) India

--- ----------

Date of Submission: 10-07-2023 Date of Acceptance: 20-07-2023

--- ----------
ABSTRACT

Software Engineering is a branch of computer

science that enables tight communication between

system software and training it as per the

requirement of the user. We have selected seven

distinct algorithms from machine learning

techniques and are going to test them using the data

sets acquired for NASA public promise

repositories. The results of our project enable the

users of this software to bag up the defects are

selecting the most efficient of given algorithms in

doing their further respective tasks, resulting in

effective results.In this work we hvae used SVM

and RF algorithms

Keywords: Support Vector Machines(SVM),

Random Forest Algorithm(RFA)

I. INTRODUCTION
Developing a software system is an

arduous process which contains planning, analysis,

design, implementation, testing, integration and

maintenance. A software engineer is expected to

develop a software system on time and within

limited the budget which are determined during the

planning phase. During the development process,

there can be some defects such as improper design,

poor functional logic, improper data handling,

wrong coding, etc. and these defects may cause

errors which lead to rework, increases in

development and maintenance costs decrease in

customer satisfaction. A defect management

approach should be applied in order to improve

software quality by tracking of these defects. In this

approach, defects are categorized depending on the

severity and corrective and preventive actions are

taken as per the severity defined. The selected

machine learning algorithms for comparison are

used for supervised learning to solve classification

problems.

 They are two tree-structured classifier

techniques: (i) Bagging and (ii) Random Forests

(RF); two neural networks techniques: (i)

Multilayer Perceptron (MLP) and (ii) Radial Basis

Function (RBF); two Bayesian classifier

techniques: (i) Naive Bayes and (ii) Multinomial

Naive Bayes; and one discriminative classifier

Support Vector Machine (SVM).

In this paper author is evaluating

performance of various machine learning

algorithms such as SVM, Bagging, Naïve Bayes,

Multinomial Naïve Bayes, RBF, Random Forest

and Multilayer Perceptron Algorithms to detect

bugs or defects from Software Components.

Defects will occur in software components due to

poor coding which may increase software

development and maintenance cost and this

problem leads to dis-satisfaction from

customers.To detect defects from software

components various techniques were developed but

right now machine learning algorithms are gaining

lots of popularity due to its better performance.

 So, in this paper also author is using

machine learning algorithms to detect defects from

software modules. In this paper author is using

dataset from NASA Software components and the

name of those datasets are CM1 and KC1.

Support vector machine (SVM) is a

supervised machine learning method capable of

both classification and regression. It is one of the

most effective and simple methods used in

classification. For classification, it is possible to

separate two groups by drawing decision

boundaries between two classes of data points in a

hyperplane. The main objective of this algorithm is

to find optimal hyperplane.

II. LITERATURE SURVEY
[1] Victor R Basili, Lionel C. Briand, and Walcelio

L Melo . ́ A validation of object-oriented design

metrics as quality indicators. IEEE Transactions on

software engineering, 22(10):751–761, 1996.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 5, Issue 7 July 2023, pp: 461-467 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0507461467 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 462

[2] Evren Ceylan, F Onur Kutlubay, and Ayse B

Bener. Software defect identification using

machine learning techniques. In 32nd

EUROMICRO Conference on Software

Engineering and Advanced Applications (EU-

ROMICRO’06), pages 240–247. IEEE, 2006.

[3] Karim O Elish and Mahmoud O Elish.

Predicting defect-prone software modules using

support vector machines. Journal of Systems and

Software, 81(5):649 660, 2008.

[4] Norman Fenton, Paul Krause, and Martin Neil.

Software measurement: Uncertainty and causal

modeling. IEEE software, 19(4):116–122, 2002.

[5] Victor R Basili, Lionel C. Briand, and Walcelio

L Melo. ´ A validation of object-oriented design

metrics as quality indicators. IEEE Transactions on

software engineering, 22(10):751–761, 1996.

[6] Evren Ceylan, F Onur Kutlubay, and Ayse B

Bener. Software defect identification using

machine learning techniques. In 32nd

EUROMICRO Conference on Software

Engineering and Advanced Applications

(EUROMICRO’06), pages 240–247. IEEE, 2006.

[3] Karim O Elish and Mahmoud O Elish.

Predicting defect-prone software modules using

support vector machines. Journal of Systems and

Software, 81(5):649– 660, 2008.

 [7] Norman Fenton, Paul Krause, and Martin Neil.

Software measurement: Uncertainty and causal

modeling. IEEE software, 19(4):116–122, 2002.

 [8] Lan Guo, Yan Ma, Bojan Cukic, and

Harshinder Singh. Robust prediction of fault-

proneness by random forests. In 15th International

Symposium on Software Reliability Engineering,

pages 417–428. IEEE, 2004.

 [9] Taghi M Khoshgoftaar, Edward B Allen, and

Jianyu Deng. Using regression trees to classify

fault-prone software modules. IEEE Transactions

on reliability, 51(4):455–462, 2002.

[10] Taghi M Khoshgoftaar, Edward B Allen, John

P Hudepohl, and Stephen J Aud. Application of

neural networks to software quality modeling of a

very large telecommunications system. IEEE

Transactions on Neural Networks, 8(4):902–909,

1997

Proposed System :-

 The proposed a model which uses three

machine learning algorithms that are Decision

Tree, Multilayer Perceptron and Radial Basis

Functions in order to identify the impact of this

model to predict defects on different software

metric datasets obtained from the real*life projects

of three big-size software companies in Turkey.

The results have shown that all of the machine

learning algorithms had similar results which have

enabled to predict potentially defective software

and take actions to correct them. have proposed a

model to solve the class imbalance problem which

causes a reduction in the performance of defect

prediction. The Gaussian function has been used as

kernel function for both the Asymmetric Kernel

Partial Least Squares Classifier (AKPLSC) and

Asymmetric Kernel Principal Component Analysis

Classifier (AKPCAC) and NASA and SOFTLAB

datasets have been used for experiments. The

results have shown that the AKPLSC had better

impact on retrieving the loss caused by class

imbalance and the AKPCAC had better

performance to predict defect on imbalanced

datasets. There is also a systematic review study

conducted by Malhotra to review the machine

learning algorithms for software fault prediction.

Advantages :-

1. Performance measures are used to evaluate

the accuracy of a prediction model.

2. Applied various defect datasets includes

NASA, PROMISE, AEEEM,

SOFTLAB and MORPH for predicting defects

by using machine learning algorithms.

3. used AUC to measure the performance of a

developed defect prediction model.

Architecture

SVM Algorithm: Machine learning involves

predicting and classifying data and to do so we

employ various machine learning algorithms

according to the dataset. SVM or Support Vector

Machine is a linear model for classification and

regression problems. It can solve linear and non-

linear problems and work well for many practical

problems. The idea of SVM is simple: The

algorithm creates a line or a hyper plane which

separates the data into classes. In machine learning,

the radial basis function kernel, or RBF kernel, is a

popular kernel function used in various kernelized

International Journal of Advances in Engineering and Management (IJAEM)

Volume 5, Issue 7 July 2023, pp: 461-467 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0507461467 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 463

learning algorithms. In particular, it is commonly

used in support vector machine classification. As a

simple example, for a classification task with only

two features (like the image above), you can think

of a hyper plane as a line that linearly separates and

classifies a set of data.

Intuitively, the further from the hyper

plane our data points lie, the more confident we are

that they have been correctly classified. We

therefore want our data points to be as far away

from the hyper plane as possible, while still being

on the correct side of it.

So when new testing data is added, whatever side

of the hyper plane it lands will decide the class that

we assign to it.

SVM can be of two types:
o Linear SVM: Linear SVM is used for linearly

separable data, which means if a dataset can be

classified into two classes by using a single

straight line, then such data is termed as

linearly separable data, and classifier is used

called as Linear SVM classifier.

o Non-linear SVM: Non-Linear SVM is used

for non-linearly separated data, which means if

a dataset cannot be classified by using a

straight line, then such data is termed as non-

linear data and classifier used is called as Non-

linear SVM classifier.

Data Preprocessing

 Clean and preprocess the collected data to

ensure its quality and consistency. This may

involve removing duplicates, handling missing

values, normalizing data, and transforming it into a

suitable format for machine learning algorithms.

Feature selection
Choose an appropriate machine learning algorithm

for defect estimation, considering factors such as

the nature of the data, the size of the dataset, and

the goals of the project. Common algorithms used

in defect estimation include decision trees, random

forests, support vector machines (SVM), and neural

networks.

Training Data:

Split the preprocessed data into training

and validation sets. Use the training set to train the

selecte machine learning model on the historical

data, adjusting the model's parameters to optimize

its performance.

Optimization

Fine-tune the model by experimenting with

different techniques, such as hyperparameter

tuning, feature selection, or ensemble methods, to

improve its performance.

Performance Evaluation:

Evaluate the trained model's performance on the

validation set using suitable metrics such as

accuracy, precision, recall, and F1 score. This step

helps assess the model's effectiveness in predicting

software defects.

I am also using same datasets to evaluate

performance of above mention algorithms.

To run this project double click on ‘run.bat’ file to

get below screen

International Journal of Advances in Engineering and Management (IJAEM)

Volume 5, Issue 7 July 2023, pp: 461-467 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0507461467 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 464

In above screen click on ‘Upload Nasa Software Dataset’ button to upload dataset

In above screen uploading ‘CM1.txt’ dataset and information of this dataset you can read from internet of

‘DATASET_INFORMATION’ file from above screen.

After uploading dataset will get below screen

International Journal of Advances in Engineering and Management (IJAEM)

Volume 5, Issue 7 July 2023, pp: 461-467 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0507461467 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 465

In above screen we can see total dataset size and

training size records and testing size records

application obtained from dataset to build train

model. Now click on ‘Run Multilayer Perceptron

Algorithm’ button to generate model and to get its

accuracy

In above screen we can see multilayer perceptron fmeasure, recall and accuracy values and scroll down in text

area to see all details.

In above screen we can see multilayer

perceptron accuracy is 93%. Similarly you click on

all other algorithms button to see their accuracies

and then click on ‘All Algorithms Accuracy Graph’

button to see all algorithms accuracy in graph to

understand which algorithm is giving high

accuracy.

In above graph x-axis represents algorithm

name and y-axis represents accuracy of those

algorithms. In all algorithms we can see MLP,

Bagging is giving better accuracy

III. CONCLUSION
In this experimental study, seven machine

learning algorithms are used to predict

defectiveness of software systems before they are

released to the real environment and/or delivered to

International Journal of Advances in Engineering and Management (IJAEM)

Volume 5, Issue 7 July 2023, pp: 461-467 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0507461467 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 466

the customers and the best category which has the

most capability to predict the software defects are

tried to find while comparing them based on

software quality metrics which are accuracy,

precision, recall and F-measure. We carry out this

experimental study with four NASA datasets which

are PC1, CM1, KC1 and KC2.

These datasets are obtained from public

PROMISE repository. The results of this

experimental study indicate that tree-structured

classifiers in other words ensemble learners which

are Random Forests and Bagging have better defect

prediction performance compared to its

counterparts. Especially, the capability of Bagging

in predicting software defectiveness is better. When

applied to all datasets, the overall accuracy,

precision, recall and FMeasure of Bagging is within

83,7-94,1%, 81,3-93,1%, 83,7- 94,1% and 82,4-

92,8% respectively.For PC1 dataset, Bagging

outperforms all other machine learning techniques

in all quality metric.

However, Naive Bayes outperforms

Bagging in precision and F-Measure while Bagging

outperforms it in accuracy and recall for CM1

dataset. Random Forests outperforms all machine

learning techniques in all quality metrics for KC1

dataset. Finally, for KC2 dataset, MLP outperforms

all machine learning techniques in all quality

metrics for KC2 dataset. It is deductive from

obtained results that tree-structured classifiers are

more suitable for software defect prediction.

Moreover, it is recommended to software

companies to utilize tree-structured classifiers for

software defect prediction due to its performance.

Utilizing these techniques enables them to save

software testing and maintenance costs by

identifying defects in the early phase of project life

cycle and taking corrective and preventive actions

before they becomes failures

The results of this experimental study

indicate that tree-structured classifiers in other

words ensemble learners which are Random

Forests and Bagging have better defect prediction

performance compared to its counterparts.

Especially, the capability of Bagging in predicting

software defectiveness is better. When applied to

all datasets, the overall accuracy, precision, recall

and FMeasure of Bagging is within 83,7-94,1%,

81,3-93,1%, 83,7- 94,1% and 82,4-92,8%

respectively.For PC1 dataset, Bagging outperforms

all other machine learning techniques in all quality

metric.

 However, Naive Bayes outperforms

Bagging in precision and F-Measure while Bagging

outperforms it in accuracy and recall for CM1

dataset. Random Forests outperforms all machine

learning techniques in all quality metrics for KC1

dataset. Finally, for KC2 dataset, MLP outperforms

all machine learning techniques in all quality

metrics for KC2 dataset. It is deductive from

obtained results that tree-structured classifiers are

more suitable for software defect prediction.

Moreover, it is recommended to software

companies to utilize tree-structured classifiers for

software defect prediction due to its performance.

REFERENCES
[1]. Victor R Basili, Lionel C. Briand, and

Walcelio L Melo. ´ A validation of object-

oriented design metrics as quality

indicators. IEEE Transactions on software

engineering, 22(10):751–761, 1996. \

[2]. Evren Ceylan, F Onur Kutlubay, and Ayse

B Bener. Software defect identification

using machine learning techniques. In

32nd EUROMICRO Conference on

Software Engineering and Advanced

Applications (EUROMICRO’06), pages

240–247. IEEE, 2006.

[3]. Karim O Elish and Mahmoud O Elish.

Predicting defect-prone software modules

using support vector machines. Journal of

Systems and Software, 81(5):649– 660,

2008.

[4]. Norman Fenton, Paul Krause, and Martin

Neil. Software measurement: Uncertainty

and causal modeling. IEEE software,

19(4):116–122, 2002.

[5]. Lan Guo, Yan Ma, Bojan Cukic, and

Harshinder Singh. Robust prediction of

fault-proneness by random forests. In 15th

International Symposium on Software

Reliability Engineering, pages 417–428.

IEEE, 2004.

[6]. Taghi M Khoshgoftaar, Edward B Allen,

and Jianyu Deng. Using regression trees to

classify fault-prone software modules.

IEEE Transactions on reliability,

51(4):455–462, 2002.

[7]. Taghi M Khoshgoftaar, Edward B Allen,

John P Hudepohl, and Stephen J Aud.

Application of neural networks to

software quality modeling of a very large

telecommunications system. IEEE

Transactions on Neural Networks,

8(4):902–909, 1997.

[8]. Sunghun Kim, Hongyu Zhang, Rongxin

Wu, and Liang Gong. Dealing with noise

in defect prediction. In 2011 33rd

International Conference on Software

Engineering (ICSE), pages 481–490.

IEEE, 2011.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 5, Issue 7 July 2023, pp: 461-467 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0507461467 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 467

[9]. Yan Ma, Lan Guo, and Bojan Cukic. A

statistical framework for the prediction of

fault-proneness. In Advances in Machine

Learning Applications in Software

Engineering, pages 237–263. IGI Global,

2007.

[10]. Ruchika Malhotra. A systematic review of

machine learning techniques for software

fault prediction. Applied Soft Computing,

27:504–518, 2015

[11]. Jinsheng Ren, Ke Qin, Ying Ma, and

Guangchun Luo. On software defect

prediction using machine learning. Journal

of Applied Mathematics, 2014, 2014.

[12]. J. Sayyad Shirabad and T.J. Menzies. The

PROMISE Repository of Software

Engineering Databases. School of

Information Technology and Engineering,

University of Ottawa, Canada, 2005.

[13]. Shuo Wang and Xin Yao. Using class

imbalance learning for software defect

prediction. IEEE Transactions on

Reliability, 62(2):434–443, 2013. [14]

Robert Andrew Weaver. The safety of

software: Constructing and assuring

arguments. University of York,

Department of Computer Science, 2003.

